Donato Rubinetti

Introduction

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

Validation Model

Summary

Particle Control

Innovation of Combustion Particle Control Technologies Assisted by Numerical Modelling

Donato Rubinetti¹ Josef Wüest²

¹Institute of Thermal and Fluid Engineering University of Applied Sciences and Arts Northwestern Switzerland

²Institute of Bioenergy and Resource Efficiency University of Applied Sciences and Arts Northwestern Switzerland

Donato Rubinetti

Introduction

Technology Pellet Burner

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

Validation Model

Summary

Introduction

Industrial Relevance

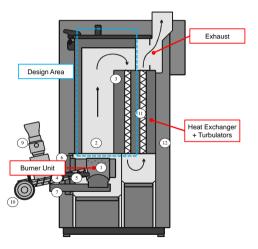
- Cleaning of exhaust gases
- Promote renewable energy sources
- Electric filter producer *OekoSolve*

Donato Rubinetti

Introduction Technology Pellet Burner

Particle Trajectories

Coupled Physics


Physical Model

Numerical Model

Validation Model

Summary

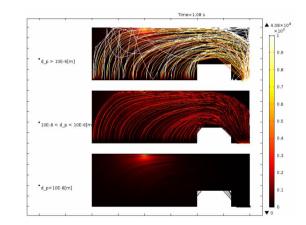
Introduction Pellet Burner

from: Liebi LNC LPK Pellet Burner Technical Documentation, 30.08.2011, www.liebilnc.ch

Donato Rubinetti

Introduction

Particle Trajectories


Coupled Physics

Physical Model

Numerical Model

Validation Model

Summary

Particle Trajectories

Entire study overview and topic definition

Features

- 2 Electrostatics
- 3 Particle charging processes
- 4 Particle deposition study
- 5 Geometry variations
- 6 Parameter variations

7 ...

Here: Focus on improving air ionization processes

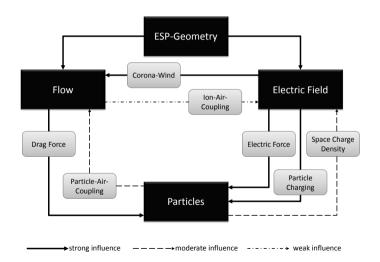
Color legend:particle charges in number of elementary charges

Donato Rubinetti

Coupled Physics

Introduction

Particle Trajectories


Coupled Physics

Physical Model

Numerical Model

Validation Model

Summary

Donato Rubinetti

Introduction

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

Validation Model

Summary

 $\begin{array}{l} \phi \,\, {\rm electric} \,\, {\rm potential} \\ \rho_{el} \,\, {\rm space} \,\, {\rm charge} \,\, {\rm density} \\ \varepsilon_0 \,\, {\rm vacuum} \,\, {\rm permittivity} \\ {\pmb E} \,\, {\rm electrical} \,\, {\rm field} \end{array}$

Physical Model

Electrostatics governing equations

(2)

(1)

Donato Rubinetti

Numerical Model

Laboratory test rig

P7 С P6 Ρ2 P5 P3 P1 M1 M2 141-141-141-M3 M4 e e e e e

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

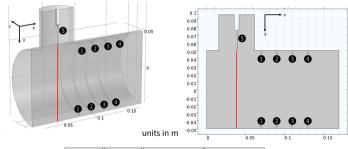
Introduction

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model


Test rig COMSOL implementa

Validation Model

Summary

Donato Rubinetti

Numerical Model COMSOL implementation

Boundary	Part	2D	3D
1	Ring 1	ground	ground
2	Ring 2	ground	ground
3	Ring 3	ground	ground
4	Ring 4	ground	ground
5	Electrode	voltage & charge	voltage & charge

.

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

Test rig COMSOL implementation

Validation

Model

Summary

Donato Rubinetti

Introduction

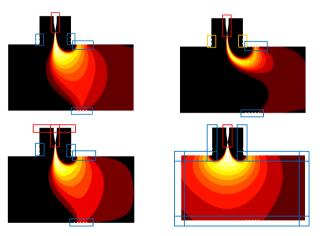
Particle Trajectories

Coupled Physics

Physical Model

Numerical Model Test rig

implementation


Validation

Model

Summary

Numerical Model

2D results - charge density distribution comparison

<ロ> <0</p>

Donato Rubinetti

Introduction

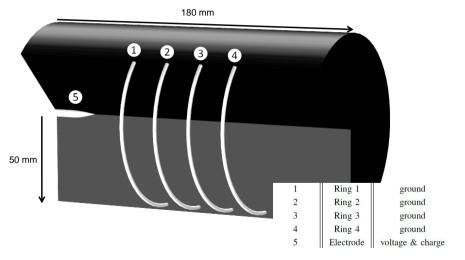
Particle Trajectories

Coupled Physics

Physical Model

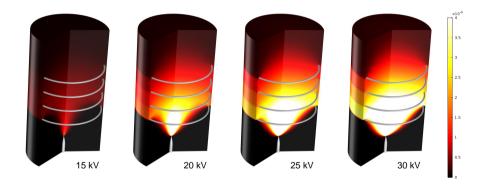
Numerical Model

Validation Model


Geometry

Result Validatio

Summary


Validation Model

2D axissymmetric geometry

Validation Model

Results - comparison of space charge density $[C/m^3]$

Particle Control

Donato Rubinetti

Introduction

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

Validation Model Geometry **Result** Validation

Summary

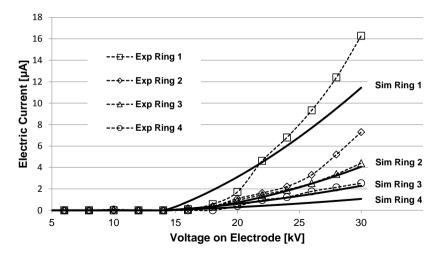
Donato Rubinetti

Introduction

Particle Trajectories

Coupled Physics

Physical Model


Numerical Model

Validation Model Geometry Result Validation

Summary

Validation Model

Comparison with test rig data

Donato Rubinetti

Introduction

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

Validation Model

Summary

Discussion

- 2D model \rightarrow qualitatively appropriate
- 3D model \rightarrow not practicable
- 2D axissymmetric model \rightarrow trade-off

Achievements

- Model conceived, tested and applied
- Successfully assist measurements and ongoing R&D

Conclusion & Outlook

- From test-case to industrially relevant model \rightarrow demonstrates the power of multiphysics modelling for innovation purposes
- Further investigation and improvement guidance

Summary

Donato Rubinetti

Introduction

Particle Trajectories

Coupled Physics

Physical Model

Numerical Model

> /alidation Model

Summary

Thank you for your attention!

Fruitful discussions with

- Beat Müller
- Trpimir Brzovic
- Daniel Jud

from OekoSolve AG are gratefully acknowledged. Further thanks to the Swiss *Commission for Technology and Innovation*.

Donato Rubinetti

Appendix

Modelling Objective

Corona Onset Field Strength Charging 2D/3D i 2D/3D ii 2D/3D ii 2D/3D ii 2D/3D iv Mesh 3D Mesh 2D

Physical understanding

- Deep understanding of the occurring effects
- Spot relevant factors for optimization

Assisting empirical work

- Compare simulation results and experimental data
- Guidance on measurement approaches

Predictive purposes

- Accelerate further R & D
- Feasability and performance studies

Modelling Objective

Donato Rubinetti

Appendix

Modelling Objective

Corona Onset Field Strength

Charging Processes 2D/3D i 2D/3D ii 2D/3D iii 2D/3D iv Mesh 3D Mesh 2D

Appendix Corona Onset Field Strength

$$E_0 = 3 \times 10^6 f_r \left(m_s + 0.03 \sqrt{\frac{m_s}{\frac{d_e}{2}}} \right)$$
$$m_s = \frac{p}{p_{ref}} \frac{T_{ref}}{T}$$

<ロ> <0</p>
<日< <0</p>
<0<

(3)

(4)

Donato Rubinetti

Appendix Particle Charging Processes

Appendix

Objective Corona Onset Field Strength

Charging Processes

2D/3D i 2D/3D ii 2D/3D iii 2D/3D iv Mesh 3D Mesh 2D Mesh 2Dr

Diffusion Charging

$$q_d(t) = \frac{2\pi\varepsilon_0 kT d_p}{e} ln \left(1 + \frac{t}{\tau_d}\right)$$

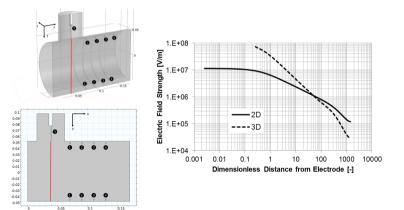
Field Charging

$$q_f(t) = \left(\frac{3\varepsilon}{\varepsilon+2}\right) \pi \varepsilon_0 E d_p^2 \frac{t}{t+\tau_f}$$

<□> <0><</p>

(5)

(6)

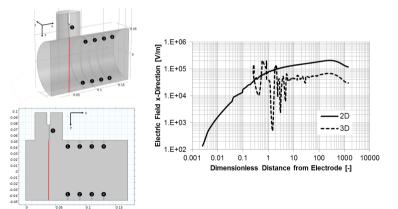

Donato Rubinetti

Appendix

Modelling Objective Corona Onset Field Strength Processes **2D/3D i** 2D/3D ii 2D/3D ii 2D/3D iv Mesh 3D Mesh 2Dr

Appendix

2D/3D comparison - Electrical field strength magnitude

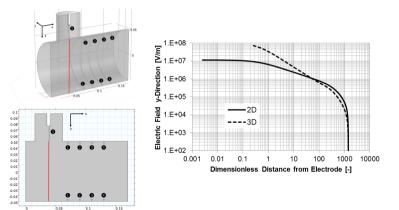


Donato Rubinetti

Appendix

Modelling Objective Corona Onset Field Strength Charging Processes 2D/3D i 2D/3D ii 2D/3D ii 2D/3D ii 2D/3D ii Mesh 3D Mesh 2D Mesh 2Dr

Appendix 2D/3D comparison - Electrical field strength x-direction

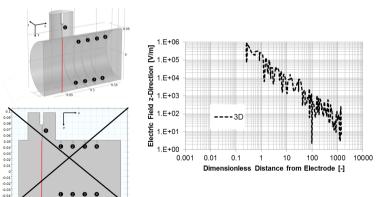

Donato Rubinetti

Appendix

Modelling Objective Corona Onset Field Strength Charging Processes 2D/3D i 2D/3D ii 2D/3D ii 2D/3D ii 2D/3D iv Mesh 3D Mesh 2Dr

Appendix

2D/3D comparison - Electrical field strength y-direction


Donato Rubinetti

Appendix

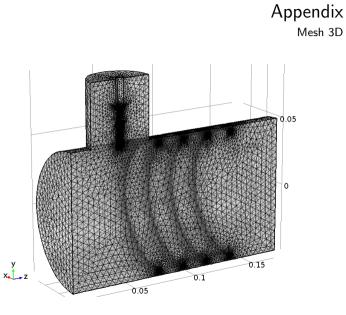
Modelling Objective Corona Onset Field Strength Processes 2D/3D i 2D/3D ii 2D/3D ii 2D/3D iv Mesh 3D Mesh 2D Mesh 2Dr

Appendix

2D/3D comparison - Electrical field strength z-direction

.0.05

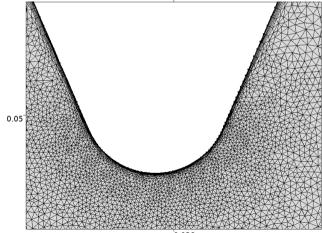
0.05


0.1

0.15

Donato Rubinetti

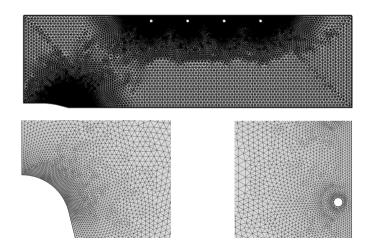
Appendix


Modelling Objective Corona Onset Field Strength Charging Processes 2D/3D i 2D/3D i 2D/3D ii 2D/3D ii 2D/3D iv Mesh 3D

Donato Rubinetti

Appendix Modelling Objective Corona Onset Field Strength Charging Processes 2D/3D i

Appendix Mesh 2D


Vlesh 2

Mesh 2D

Donato Rubinetti

Appendix

Modelling Objective Corona Onset Field Strength Charging Processes 2D/3D i 2D/3D ii 2D/3D ii 2D/3D ii 2D/3D iv Mesh 3D Mesh 2D Mesh 2Dr

Appendix Mesh 2D axisymmetric